

Mathematics Standards for High School

Mathematics | High School—Number and Quantity

Number and Quantity Overview

The Real Number System

- Extend the properties of exponents to rational exponents
- Use properties of rational and irrational numbers.

Quantities

 Reason quantitatively and use units to solve problems

The Complex Number System

- Perform arithmetic operations with complex numbers
- Represent complex numbers and their operations on the complex plane
- Use complex numbers in polynomial identities and equations

Vector and Matrix Quantities

- Represent and model with vector quantities.
- Perform operations on vectors.
- Perform operations on matrices and use matrices in applications.

HIGH SCHOOL – NUMBER AND QUANTITY | 61

Seeing Structure in Expressions

- Interpret the structure of expressions
- Write expressions in equivalent forms to solve problems

Arithmetic with Polynomials and Rational Expressions

- · Perform arithmetic operations on polynomials
- Understand the relationship between zeros and factors of polynomials
- Use polynomial identities to solve problems
- Rewrite rational expressions

Creating Equations

• Creatied special in the second states of the states of public the stat

Represent and solve equations and inequalities graphically

Mathematics | High School—Functions

Interpreting Functions

•

Interpret functions that arise in applications in terms of the context

4. F	A A	Π		<u>م</u>						
	2 353.	٩Ø	74 n	71n	Ø1571 B DA	71 n	ø	₽ 3	A	bT(tbcm b huu(oph \$jp s b lt. p Mtn jp(/,p/)t((,p/)t(p yh1

Construct and compare linear, quadratic, and exponential models

HIGH SCH

Geometry Overview

Congruence

- · Experiment with transformations in the plane
- Understand congruence in terms of rigid motions
- Prove geometric theorems
- Make geometric constructions

Similarity, Right Triangles, and Trigonometry

- Understand similarity in terms of similarity transformations
- · Prove theorems involving similarity
- Define trigonometric ratios and solve problems involving right triangles
- Apply trigonometry to general triangles

Circles

- · Understand and apply theorems about circles
- · Find arc lengths and areas of sectors of circles

Expressing Geometric Properties with Equations

- Translate between the geometric description and the equation for a conic section
- Use coordinates to prove simple geometric theorems algebraically

Geometric Measurement and Dimension

- Explain volume formulas and use them to solve problems
- Visualize relationships between twodimensional and three-dimensional objects

Modeling with Geometry

Apply geometric concepts in modeling situations

G-CO

Experiment with transformations in the plane

Find arc lengths and areas of sectors of circles

Mathematics | High School—Statistics and Probability

Interpreting Categorical and Quantitative Data

- Summarize, represent, and interpret data on a single count or measurement variable
- Summarize, represent, and interpret data on two categorical and quantitative variables
- Interpret linear models

S-ID

Summarize, represent, and interpret data on a single count or measurement variable

Summarize, represent, and interpret data on two categorical and quantitative variables **Bt#1R#17/04 QTD**. Tjlw-ITeT

Understand independence and conditional probability and use them to interpret data

example, compare the chance of having lung cancer if you are a smoker with the chance of being a smoker if you have lung cancer.

Mt WDT JECK er JP OJT CHIER 3 JE Phv JECHIER 3 JE JEC (Id JP Int JOB N/ 19 (In rwtw. Jose Ber GT JECHIER 3 JE DIR vT) JECK er JP IT JECHIER 3 JECKIER 1 JECKIER 3 JEC

3.	(+) D	Pi	A	T.		A		
	П				<u>۹</u>	;		
	• For example, find the theoretical probability distribution for the number of correct answers obtained by guessing on all five questions of a multiple-choice test where each question has four choices, and find the expected grade under various grading schemes.							
4.	(+) D	A	Pi	1	P	л ; л		
	. For example, find a current data distribution on the number of TV sets per household in the United States, and calculate the expected number of sets per household. How many TV sets would you expect to find in 100 randomly selected households?							

Use probability to evaluate outcomes of decisions

5. (+)	B B B	367 45 6893 3 2 m 7	n 746 2595 3 ; 1 45	63	27 0 6 n7	n 740n 71 B 72n 740n T
--------	-------	----------------------------	-----------------------------------	----	------------------	------------------------

-